

 Unit 5 notes
Turing machine:

Informal Definition:

We consider here a basic model of TM which is deterministic and have one-tape. There are many variations, all
are equally powerfull.

The basic model of TM has a finite set of states, a semi-infinite tape that has a leftmost cell but is infinite to the
right and a tape head that can move left and right over the tape, reading and writing symbols.

For any input w with |w|=n, initially it is written on the n leftmost (continguous) tape cells. The infinitely many
cells to the right of the input all contain a blank symbol, B whcih is a special tape symbol that is not an input
symbol. The machine starts in its start state with its head scanning the leftmost symbol of the input w. De-
pending upon the symbol scanned by the tape head and the current state the machine makes a move which
consists of the following:

 writes a new symbol on that tape cell,

moves its head one cell either to the left or to the right and

 (possibly) enters a new state.

The action it takes in each step is determined by a transition functions. The machine continues computing (i.e.
making moves) until

 it decides to "accept" its input by entering a special state called accept or final state or

 halts without accepting i.e. rejecting the input when there is no move defined.

On some inputs the TM many keep on computing forever without ever accepting or rejecting the input, in which
case it is said to "loop" on that input

Formal Definition :

Formally, a deterministic turing machine (DTM) is a 7-tuple , where

 Q is a finite nonempty set of states.

 is a finite non-empty set of tape symbols, callled the tape alphabet of M.

 is a finite non-empty set of input symbols, called the input alphabet of M.

 is the transition function of M,

 is the initial or start state.

 is the blank symbol

 is the set of final state.

So, given the current state and tape symbol being read, the transition function describes the next state, symbol

to be written on the tape, and the direction in which to move the tape head (L and R denote left and right,

respectively).

Transition function :

 The heart of the TM is the transition function, because it tells us how the machine gets one step to

the next.

 when the machine is in a certain state q Q and the head is currently scanning the tape symbol

, and if , then the machine

1. replaces the symbol X by Y on the tape

2. goes to state p, and

3. the tape head moves one cell (i.e. one tape symbol) to the left (or right) if D is L (or R).

The ID (instantaneous description) of a TM capture what is going out at any moment i.e. it contains all the
information to exactly capture the "current state of the computations".

It contains the following:

 The current state, q

 The position of the tape head,

 The constants of the tape up to the rightmost nonblank symbol or the symbol to the left of the head,
whichever is rightmost.

Note that, although there is no limit on how far right the head may move and write nonblank symbols on the
tape, at any finite

time, the TM has visited only a finite prefix of the infinite tape.

An ID (or configuration) of a TM M is denoted by where and

 is the tape contents to the left of the head

 q is the current state.

 is the tape contents at or to the right of the tape head

That is, the tape head is currently scanning the leftmost tape symbol of . (Note that if , then the tape
head is scanning a blank symbol)

If is the start state and w is the input to a TM M then the starting or initial configuration of M is onviously

denoted by

Moves of Turing Machines

To indicate one move we use the symbol . Similarly, zero, one, or more moves will be represented by . A
move of a TM

M is defined as follows.

Let be an ID of M where , and .

Let there exists a transition of M.

Then we write meaning that ID yields

 Alternatively , if is a transition of M, then we write which

means that the ID yields

 In other words, when two IDs are related by the relation , we say that the first one yields the second
(or the second is the result of the first) by one move.

 If IDj results from IDi by zero, one or more (finite) moves then we write (If the TM M is understand,

then the subscript M can be dropped from or)

Special Boundary Cases

 Let be an ID and be an transition of M. Then . That is, the head is not

allowed to fall off the left end of the tape.

 Let be an ID and then figure (Note that is equivalent to)

 Let be an ID and then figure

 Let be an ID and then figure

The language accepted by a TM , denoted as L(M) is

L(M) = { w | and figure for some p F and }

In other words the TM M accepts a string that cause M to enter a final or accepting state when started

in its initial ID (i.e.). That is a TM M accepts the string if a sequence of IDs,

exists such that

 is the initial or starting ID of M

 ;

 The representation of IDk contains an accepting state.

The set of strings that M accepts is the language of M, denoted L(M), as defined above

More about configuration and acceptance

 An ID of M is called an accepting (or final) ID if

 An ID is called a blocking (or halting) ID if is undefined i.e. the TM has no move at this
point.

 is called reactable from if

 is the initial (or starting) ID if is the input to the TM and is the initial (or start) state

of M.

On any input string

either

 M halts on w if there exists a blocking (configuration) ID, such that

There are two cases to be considered

 M accepts w if I is an accepting ID. The set of all accepted by M is denoted as L(M) as

already defined

 M rejects w if is a blocking configuration. Denote by reject (M), the set of all rejected by M.

or

 M loops on w if it does not halt on w.

Let loop(M) be the set of all on which M loops for.

It is quite clear that

That is, we assume that a TM M halts

 When it enters an accepting or

 When it enters a blocking i.e. when there is no next move.

However, on some input string, , , it is possible that the TM M loops for ever i.e. it never halts

The Halting Problem
The input to a Turing machine is a string. Turing machines themselves can be written as

strings. Since these strings can be used as input to other Turing machines. A “Universal Turing

machine” is one whose input consists of a description M of some arbitrary Turing machine, and

some input w to which machine M is to be applied, we write this combined input as M + w. This

produces the same output that would be produced by M. This is written as

Universal Turing Machine (M + w) = M (w).

As a Turing machine can be represented as a string, it is fully possible to supply a Turing

machine as input to itself, for example M (M). This is not even a particularly bizarre thing to do for

example, suppose you have written a C pretty printer in C, then used the Pretty printer on itself.

Another common usage is Bootstrapping—where some convenient languages used to write a

minimal compiler for some new language L, then used this minimal compiler for L to write a new,

improved compiler for language L. Each time a new feature is added to language L, you can

recompile and use this new feature in the next version of the compiler. Turing machines sometimes

halt, and sometimes they enter an infinite loop.

A Turing machine might halt for one input string, but go into an infinite loop when given

some other string. The halting problem asks: “It is possible to tell, in general, whether a given

machine will halt for some given input?” If it is possible, then there is an effective procedure to look

at a Turing machine and its input and determine whether the machine will halt with that input. If

there is an effective procedure, then we can build a Turing machine to implement it. Suppose we

have a Turing machine “WillHalt” which, given an input string M + w, will halt and accept the string

if Turing machine M halts on input w and will halt and reject the string if Turing machine M does not

halt on input w. When viewed as a Boolean function, “WillHalt (M, w)” halts and returns “TRUE” in

the first case, and (halts and) returns “FALSE” in the second.

Theorem

Turing Machine “WillHalt (M, w)” does not exist.

Proof: This theorem is proved by contradiction. Suppose we could build a machine “WillHalt”.

Then we can certainly build a second machine, “LoopIfHalts”, that will go into an infinite loop if

and only if “WillHalt” accepts its input:
Function LoopIfHalts (M, w):
if WillHalt (M, w) then
while true do { }

else
return false;

We will also define a machine “LoopIfHaltOnItSelf” that, for any given input M, representing a
Turing machine, will determine what will happen if M is applied to itself, and loops if M will halt in

this case.
Function LoopIfHaltsOnItself (M):

return LoopIfHalts (M, M):

Finally, we ask what happens if we try:
Func tion Impos sible:

return LoopIfHaltsOnItself (LoopIfHaltsOnItself):

This machine, when applied to itself, goes into an infinite loop if and only if it halts when

applied to itself. This is impossible. Hence the theorem is proved.

Implications of Halting Problem

Programming

The Theorem of “Halting Problem” does not say that we can never determine whether or not
a given program halts on a given input. Most of the times, for practical reasons, we could eliminate

infinite loops from programs. Sometimes a “meta-program” is used to check another program for

potential infinite loops, and get this meta-program to work most of the time.

The theorem says that we cannot ever write such a meta-program and have it work all of the

time. This result is also used to demonstrate that certain other programs are also impossible.

The basic outline is as follows:

(i) If we could solve a problem X, we could solve the Halting problem
(ii) We cannot solve the Halting Problem

(iii) Therefore, we cannot solve problem X

A Turing machine can be "programmed," in much the same manner as a computer is

programmed. When one specifies the function which we usually call for a Tm, he is really writing

a program for the Tm.

1. Storage in finite Control

The finite control can be used to hold a finite amount of information. To do so, the state is

written as a pair of elements, one exercising control and the other storing a symbol. It should be

emphasized that this arrangement is for conceptual purposes only. No modification in the definition

of the Turing machine has been made.
Example

Consider the Turing machine

Solution

2. Multiple Tracks

We can imagine that the tape of the Turing machine is divided into k tracks, for any finite k. This

arrangement is shown in Fig., with k = 3. What is actually done is that the symbols on the tape are

considered as k-tuples. One component for each track.

Example

The tape in Fig. can be imagined to be that of a Turing machine which takes a binary input
greater than 2, written on the first track, and determines if it is a prime. The input is surrounded by ¢

and $ on the first track.

Thus, the allowable input symbols are [¢, B, B], [0, B, B], [1, B, B], and [$, B, B]. These

symbols can be identified with ¢, 0, 1, and $, respectively, when viewed as input symbols. The blank

symbol can be represented by [B, B, B]
To test if its input is a prime, the Tm first writes the number two in binary on the second track

and copies the first track onto the third track. Then, the second track is subtracted, as many times as

possible, from the third track, effectively dividing the third track by the second and leaving the

remainder. If the remainder is zero, the number on the first track is not a prime. If the remainder is

nonzero, increase the number on the second track by one.

If now the second track equals the first, the number on the first track is a prime, because it cannot

be divided by any number between one and itself. If the second is less than the first, the whole

operation is repeated for the new number on the second track. In Fig., the Tm is testing to determine

if 47 is a prime. The Tm is dividing by 5; already 5 has been subtracted twice, so 37 appears on the

third track.

3. Subroutines

UNDECIDABILITY

Design a Turing machine to add two given integers.

Solution:

Some unsolvable Problems are as follows:

(i) Does a given Turing machine M halts on all input?

(ii) Does Turing machine M halt for any input?

(iii) Is the language L(M) finite?

(iv) Does L(M) contain a string of length k, for some given k?

(v) Do two Turing machines M1 and M2 accept the same language?

It is very obvious that if there is no algorithm that decides, for an arbitrary given Turing machine M

and input string w, whether or not M accepts w. These problems for which no algorithms exist are

called “UNDECIDABLE” or “UNSOLVABLE”.

Code for Turing Machine:

Diagonalization language:

This table represents language acceptable by Turing machine

Proof that Ld is not recursively enumerable:

Recursive Languages:

Universal

Language:

Undecidability of Universal Language:

Problem -Reduction :

If P1 reduced to P2,
Then P2 is at least as hard as P1.

Theorem: If P1 reduces to P2 then,

 If P1 is undecidable the so is P2.

 If P1 is Non-RE then so is P2.

i xi yi

1

2

3

Post's Correspondence Problem (PCP)

A post correspondence system consists of a finite set of ordered pairs where

for some alphabet .

Any sequence of numbers

is called a solution to a Post Correspondence System.

The Post's Correspondence Problem is the problem of determining whether a
Post Correspondence system has a solutions.

Example 1 : Consider the post correspondence system

The list 1,2,1,3 is a solution to it.

Because

(A post correspondence system is also denoted as an instance of the PCP)

Example 2 : The following PCP instance has no solution

i xi yi

1

2

This can be proved as follows. cannot be chosen at the start, since than the LHS and RHS would

differ in the first symbol (in LHS and in RHS). So, we must start with . The next pair must be

so that the 3 rd symbol in the RHS becomes identical to that of the LHS, which is a . After this

step, LHS and RHS are not matching. If is selected next, then would be mismatched in the 7 th symbol

(in LHS and in RHS). If is selected, instead, there will not be any choice to match the both side in
the next step.

Example3 : The list 1,3,2,3 is a solution to the following PCP instance.

i xi yi

1 1 101

2 10 00

3 011 11

The following properties can easily be proved.

Proposition The Post Correspondence System

has solutions if and only if

Corollary : PCP over one-letter alphabet is decidable.

Proposition Any PCP instance over an alphabet with is equivalent to a PCP instance over an

alphabet with

Proof : Let

Consider We can now encode every as any PCP instance over will now

have only two symbols, 0 and 1 and, hence, is equivalent to a PCP instance over

Theorem : PCP is undecidable. That is, there is no algorithm that determines whether an arbitrary Post
Correspondence System has a solution.

Proof: The halting problem of turning machine can be reduced to PCP to show the undecidability of PCP. Since
halting problem of TM is undecidable (already proved), This reduction shows that PCP is also undecidable. The
proof is little bit lengthy and left as an exercise.

Some undecidable problem in context-free languages

We can use the undecidability of PCP to show that many problem concerning the context-free languages are
undecidable. To prove this we reduce the PCP to each of these problem. The following discussion makes it
clear how PCP can be used to serve this purpose.

Let be a Post Correspondence System over the alphabet . We construct
two CFG's Gx and Gy from the ordered pairs x,y respectively as follows.

and

where

and

it is clear that the grammar generates the strings that can appear in the LHS of a sequence while solving
the PCP followed by a sequence of numbers. The sequence of number at the end records the sequence of

strings from the PCP instance (in reverse order) that generates the string. Similarly, generates the strings
that can be obtained from the RHS of a sequence and the corresponding sequence of numbers (in reverse
order).

Now, if the Post Correspondence System has a solution, then there must be a sequence

According to the construction of and

In this case

Hence , and implying

Conversely, let

Hence, w must be in the form w1w2 where and w2 in a sequence (since, only that kind of

strings can be generated by each of and).

Now, the string is a solution to the Post Correspondence System.

It is interesting to note that we have here reduced PCP to the language of pairs of CFG,s whose intersection is
nonempty. The following result is a direct conclusion of the above.

Theorem : Given any two CFG's G1 and G2 the question "Is " is undecidable.

Proof: Assume for contradiction that there exists an algorithm A to decide this question. This would imply that
PCP is decidable as shown below.

For any Post Correspondence System, P construct grammars and by using the constructions

elaborated already. We can now use the algorithm A to decide whether and

Thus, PCP is decidable, a contradiction. So, such an algorithm does not exist.

If and are CFG's constructed from any arbitrary Post Correspondence System, than it is not difficult to

show that and are also context-free, even though the class of context-free languages are not
closed under complementation.

and their complements can be used in various ways to show that many other questions

related to CFL's are undecidable. We prove here some of those.

Theorem : Foe any two arbitrary CFG's the following questions are undecidable

i. Is

ii. Is

iii. Is

Proof :

i. If then,

Hence, it suffice to show that the question “Is " is undecidable.

Since, and are CFl's and CFL's are closed under union, is also context-

free. By DeMorgan's theorem,

If there is an algorithm to decide whether we can use it to decide whether

or not. But this problem has already been proved to be undecidable.

Hence there is no such algorithm to decide or not.

ii.

Let P be any arbitrary Post correspondence system and and are CFg's constructed from the pairs of
strings.

must be a CFL and let G1generates L1. That is,

by De Morgan's theorem, as shown already, any string, represents a solution to the

PCP. Hence, contains all but those strings representing the solution to the PCP.

Let for same CFG G2.

It is now obvious that if and only if the PCP has no solutions, which is already proved to be

undecidable. Hence, the question “Is ?" is undecidable.

iii.

Let be a CFG generating the language and G2 be a CFG generating

where and are CFG.s constructed from same arbitrary instance of PCP.

iff

i.e. iff the PCP instance has no solutions as discussed in part (ii).

Hence the proof.

Theorem : It is undecidable whether an arbitrary CFG is ambiguous.

Proof : Consider an arbitrary instance of PCP and construct the CFG's and from the ordered pairs of
strings.

We construct a new grammar G from and as follows.

where

is same as that of and .

This constructions gives a reduction of PCP to the --------- of whether a CFG is ambiguous, thus leading to the
undecidability of the given problem. That is, we will now show that the PCP has a solution if and only if G is
ambiguous. (where G is constructed from an arbitrary instance of PCP).

Only if Assume that is a solution sequence to this instance of PCP.

Consider the following two derivation in .

But ,

is a solution to the PCP. Hence the same string of terminals has two derivations. Both these
derivations are, clearly, leftmost. Hence G is ambiguous.

If It is important to note that any string of terminals cannot have more than one derivation in and

Because, every terminal string which are derivable under these grammars ends with a sequence of integers

This sequence uniquely determines which productions must be used at every step of the derivation.

Hence, if a terminal string, , has two leftmost derivations, then one of them must begin with the
step.

then continues with derivations under

In both derivations the resulting string must end with a sequence for same The reverse of
this sequence must be a solution to the PCP, because the string that precede in one case is

and in the other case. Since the string derived in both cases are identical, the

sequence

must be a solution to the PCP.

Hence the proof

Class p-problem solvable in polynomial time:

Non deterministic polynomial time:

A nondeterministic TM that never makes more than p(n) moves in any sequence of choices for some

polynomial p is said to be non polynomial time NTM.

 NP is the set of languags that are accepted by polynomial time NTM’s

 Many problems are in NP but appear not to be in p.

 One of the great mathematical questions of our age: is there anything in NP that is not in p?

NP-complete problems:

If We cannot resolve the “p=np question, we can at least demonstrate that certain problems in NP are

the hardest , in the sense that if any one of them were in P , then P=NP.

 These are called NP-complete.

 Intellectual leverage: Each NP-complete problem’s apparent difficulty reinforces the belief

that they are all hard.

Methods for proving NP-Complete problems:

 Polynomial time reduction (PTR): Take time that is some polynomial in the input size to

convert instances of one problem to instances of another.

 If P1 PTR to P2 and P2 is in P1 the so is P1.

 Start by showing every problem in NP has a PTR to Satisfiability of Boolean formula.

 Then, more problems can be proven NP complete by showing that SAT PTRs to them

directly or indirectly.

